7 research outputs found

    Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons

    Get PDF
    SummaryWe demonstrate using conditional mutagenesis that Pbx1, with and without Pbx2+/− sensitization, regulates regional identity and laminar patterning of the developing mouse neocortex in cortical progenitors (Emx1-Cre) and in newly generated neurons (Nex1-Cre). Pbx1/2 mutants have three salient molecular phenotypes of cortical regional and laminar organization: hypoplasia of the frontal cortex, ventral expansion of the dorsomedial cortex, and ventral expansion of Reelin expression in the cortical plate of the frontal cortex, concomitant with an inversion of cortical layering in the rostral cortex. Molecular analyses, including PBX ChIP-seq, provide evidence that PBX promotes frontal cortex identity by repressing genes that promote dorsocaudal fate

    Autism risk gene POGZ promotes chromatin accessibility and expression of clustered synaptic genes.

    No full text
    Deleterious genetic variants in POGZ, which encodes the chromatin regulator Pogo Transposable Element with ZNF Domain protein, are strongly associated with autism spectrum disorder (ASD). Although it is a high-confidence ASD risk gene, the neurodevelopmental functions of POGZ remain unclear. Here we reveal the genomic binding of POGZ in the developing forebrain at euchromatic loci and gene regulatory elements (REs). We profile chromatin accessibility and gene expression in Pogz-/- mice and show that POGZ promotes the active chromatin state and transcription of clustered synaptic genes. We further demonstrate that POGZ forms a nuclear complex and co-occupies loci with ADNP, another high-confidence ASD risk gene, and provide evidence that POGZ regulates other neurodevelopmental disorder risk genes as well. Our results reveal a neurodevelopmental function of an ASD risk gene and identify molecular targets that may elucidate its function in ASD

    Single cell enhancer activity distinguishes GABAergic and cholinergic lineages in embryonic mouse basal ganglia.

    No full text
    Enhancers integrate transcription factor signaling pathways that drive cell fate specification in the developing brain. We paired enhancer labeling and single-cell RNA-sequencing (scRNA-seq) to delineate and distinguish specification of neuronal lineages in mouse medial, lateral, and caudal ganglionic eminences (MGE, LGE, and CGE) at embryonic day (E)11.5. We show that scRNA-seq clustering using transcription factors improves resolution of regional and developmental populations, and that enhancer activities identify specific and overlapping GE-derived neuronal populations. First, we mapped the activities of seven evolutionarily conserved brain enhancers at single-cell resolution in vivo, finding that the selected enhancers had diverse activities in specific progenitor and neuronal populations across the GEs. We then applied enhancer-based labeling, scRNA-seq, and analysis of in situ hybridization data to distinguish transcriptionally distinct and spatially defined subtypes of MGE-derived GABAergic and cholinergic projection neurons and interneurons. Our results map developmental origins and specification paths underlying neurogenesis in the embryonic basal ganglia and showcase the power of scRNA-seq combined with enhancer-based labeling to resolve the complex paths of neuronal specification underlying mouse brain development

    Transcriptional network orchestrating regional patterning of cortical progenitors.

    Get PDF
    We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer-gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse
    corecore